گزارش فعالیت احتمالی ترانسپوزون‌ها هنگام کالوس‌زایی در
سیبزمینی تریپلوید

مسبح فروتن،* اندرو وتن،† مایکل ویلکیسون،‡
گروه علم زیستی، دانشگاه ریدینگ، انگلستان
forootan@rifr-ac.ir

*نویسنده مستند مکانیابی، پست الکترونیک:

چکیده

هدف اولیه این تحقیق، امکان‌سنجی القای ناپایداری کروموزومی در کشت کالوس سیبزمینی می‌باشد.

است. کالوس حاصل از برگ در معیت‌های با دمای مختلف رشد کرده و وجود یا عدم وجود ریزماوهاره‌های اختصاصی گروهاي زنی در گیاه‌های حاصل از کشت کالوس بررسی شده. مشاهده شد که در سه گیاه‌چه بازاری شاهه از کالوس، قطعات DNA حاصل از SSR-PCR مشاهده می‌شود. در بررسی مجدداً این نمونه‌ها، از یکی از آغازگرهای رفت‌پیوسته ریزماوهاره در سلسله می‌گردد. نتیجه‌گیری شد که نمونه‌های 100bp با رنگ‌گیری به دو آغازگرهای بیافی مشاهده می‌شود. بررسی چندین پردازش نشان داد که پارامتر بر این پدیده می‌باشد، بخصوص احتمال حرکت آزمایشی مورد بحث قرار گرفت.

مقدمه

ترانسپوزون‌ها (توالی‌هایی از DNA که می‌توانند به مکان‌های دیگر زنوم منتقل شوند) در گونه‌های گیاهی برای اولین بار در دهه 1940 میلادی مشاهده شدند (1). این گروه توالی‌ها بسیار در مکان‌هایی که از آن برای تکثیر و انتقال خود استفاده می‌کند، و نیز ساختار زنی‌ساختاری دارند. در این آزمایش‌های جدید، یکی از گونه‌های گیاهی مشاهده شد: آنها هرگاه گیاهچه‌های در مکان اولیه باقی مانده توسط DNA (mRNA) جابجا می‌شود. و آنها که نسخه‌هایی از خود را (از طریق REMAP سیبزمینی)
1. **transposon (element)**: a type of genetic element that can move from one position to another within the genome. It is a large DNA fragment that can insert into a genome and replicate. The use of transposons in genomics and genetics is extensive, and they play a crucial role in genome evolution, gene regulation, and genetic diversity.

2. **retrotransposon (transposon)**: a type of transposon that uses RNA as an intermediate stage in its transfer mechanism. It moves from one position to another by copying a DNA copy of its RNA transcript and inserting it into the genome. Retrotransposons are typically larger than their DNA-only counterparts and are composed of a typical repetitive sequence.

3. **LTR (Long Terminal Repeat)**: a structure found at the ends of certain types of retrotransposons, consisting of a short repetitive element that serves as a primer for reverse transcription. The presence of LTRs in sequence data indicates the likelihood of the presence of a retrotransposon.

4. **IRAP (Intron-Deleted Retrotransposon Amplification Polymorphism)**: a method used to identify and quantify transposons by amplifying intron-deleted copies of transponson inserts.

5. **Polymorphism**: a genetic variation within a population that is transmitted from parent to offspring. In the context of transposons, this refers to differences in the sequence of the transposon or the number of copies present in different genotypes.

6. **REmap (Retrotransposon Microsatellite Amplification Polymorphism)**: a method that uses microsatellite markers within retrotransposons to identify and quantify transposon insertions.

7. **Core LTR sequence**: the conserved sequence that is present at the ends of long terminal repeats. It is flanked by the reverse complement of the other LTR.

8. **RT (Reverse Transcriptase)**: an enzyme that catalyzes the reverse transcription of RNA to DNA. It is essential for the replication of retrotransposons.

9. **CG radical**: a transposable element that inserts DNA by cleaving DNA at the phosphodiester bond and forming a covalent linkage with the 3'-end of single-stranded DNA.

10. **Zinc finger protein**: a protein domain that contains zinc-binding sites. It is often involved in DNA binding and transcriptional regulation.

11. **Pou5f1 (OCT4)**: a transcription factor that plays a crucial role in maintaining pluripotency in embryonic stem cells. It is essential for the maintenance of self-renewal and differentiation in embryonic stem cells.

12. **KAP1 (kidnapped protein)**: a transcriptional co-repressor that binds to OCT4 and other factors to inhibit gene expression.

13. **lncRNA (long non-coding RNA)**: a non-coding RNA molecule that is longer than 200 nucleotides. It is involved in various cellular processes, including gene expression regulation.

14. **RNA polymerase II (Pol II)**: a key enzyme in gene expression that transcribes DNA into RNA. It is responsible for the synthesis of the majority of protein-coding genes.

15. **β-catenin (CTNNB1)**: a component of the Wnt signaling pathway that regulates cell adhesion and proliferation.

16. **FOXM1 (FOX protein)**: a transcription factor that functions in cell differentiation and proliferation, particularly in the context of cancer.

17. **RUNX1 (Runt-related transcription factor 1)**: a transcription factor involved in hematopoietic cell differentiation and development.

18. **H3K4me3**: a histone modification that marks active promoters and enhancers in the genome. It is often associated with gene expression and transcription.

19. **H3K27ac**: another histone modification that marks active enhancers and is associated with transcriptional activation.

20. **CTCF (CCCTC-binding factor)**: a transcriptional regulator that binds to specific sequences in the genome and plays a role in various cellular processes, including transcription and DNA replication.

21. **Wingless (WNT)**: a family of signaling molecules that play a crucial role in developmental processes, including cell fate determination and oncogenesis.

22. **GSK3β (glycogen synthase kinase 3 beta)**: a protein kinase involved in a wide range of cellular processes, including transcriptional regulation and cell cycle control.

23. **APC (adenomatous polyposis coli)**: a tumor suppressor gene that is involved in the Wnt signaling pathway and plays a role in colorectal cancer development.

24. **Wnt-1 (Wnt (wingless-related motif))**: a gene that encodes a member of the Wnt family, which regulates various cellular processes, including cell fate determination and embryonic development.

25. **FGFR1 (fibroblast growth factor receptor 1)**: a receptor that plays a role in embryonic development and cell proliferation.

26. **CDK4 (cyclin-dependent kinase 4)**: a kinase that is involved in cell cycle progression and plays a crucial role in maintaining genomic stability.

27. **CDK6 (cyclin-dependent kinase 6)**: another kinase involved in cell cycle regulation and proliferation.

28. **EBF (early B-cell factor)**: a transcription factor that is essential for B-cell development and is involved in regulating cell proliferation and differentiation.

29. **Oct4 (OCT transcription factor)**: a key transcription factor involved in maintaining the pluripotency of embryonic stem cells.

30. **Zeb1 (ZNFX3)**: a transcription factor that is involved in various cellular processes, including cell fate determination and lineage commitment.

31. **TEF1 (transcription elongation factor 1)**: a transcriptional regulator that is involved in cell cycle regulation and proliferation.

32. **Kap1 (kidnapped protein)**: another transcriptional regulator involved in maintaining self-renewal and differentiation in embryonic stem cells.

33. **lncRNA (long non-coding RNA)**: a molecule that can interact with various cellular processes and play a role in gene expression regulation.

34. **miRNA (microRNA)**: small non-coding RNAs that are involved in gene expression regulation by targeting messenger RNA and promoting degradation or translational repression.

35. **REmap (Retrotransposon Microsatellite Amplification Polymorphism)**: a method that uses microsatellite markers within retrotransposons to identify and quantify transposon insertions.

36. **IRAP (Intron-Deleted Retrotransposon Amplification Polymorphism)**: a method that uses intron-deleted copies of transposon inserts to identify and quantify transposon insertions.

37. **Polymorphism**: a genetic variation within a population that is transmitted from parent to offspring. In the context of transposons, this refers to differences in the sequence of the transposon or the number of copies present in different genotypes.

38. **CG radical**: a transposable element that inserts DNA by cleaving DNA at the phosphodiester bond and forming a covalent linkage with the 3'-end of single-stranded DNA.

39. **apoptosis (programmed cell death)**: a cellular process that is crucial for maintaining tissue homeostasis and preventing the development of cancer.

40. **long terminal repeat (LTR)**: a structure found at the ends of certain types of retrotransposons, consisting of a short repetitive element that serves as a primer for reverse transcription. The presence of LTRs in sequence data indicates the likelihood of the presence of a retrotransposon.

41. **intron-deleted retrotransposon**: a type of retrotransposon that has lost its introns, making it easier to amplify and quantify in genetic studies.

42. **REmap (Retrotransposon Microsatellite Amplification Polymorphism)**: a method that uses microsatellite markers within retrotransposons to identify and quantify transposon insertions.

43. **IRAP (Intron-Deleted Retrotransposon Amplification Polymorphism)**: a method that uses intron-deleted copies of transposon inserts to identify and quantify transposon insertions.

44. **Polymorphism**: a genetic variation within a population that is transmitted from parent to offspring. In the context of transposons, this refers to differences in the sequence of the transposon or the number of copies present in different genotypes.

45. **CG radical**: a transposable element that inserts DNA by cleaving DNA at the phosphodiester bond and forming a covalent linkage with the 3'-end of single-stranded DNA.

46. **lpRNA (intronic lncRNA)**: a type of long non-coding RNA that is transcribed from introns and is involved in gene expression regulation.

47. **REmap (Retrotransposon Microsatellite Amplification Polymorphism)**: a method that uses microsatellite markers within retrotransposons to identify and quantify transposon insertions.

48. **IRAP (Intron-Deleted Retrotransposon Amplification Polymorphism)**: a method that uses intron-deleted copies of transposon inserts to identify and quantify transposon insertions.

49. **Polymorphism**: a genetic variation within a population that is transmitted from parent to offspring. In the context of transposons, this refers to differences in the sequence of the transposon or the number of copies present in different genotypes.

50. **CG radical**: a transposable element that inserts DNA by cleaving DNA at the phosphodiester bond and forming a covalent linkage with the 3'-end of single-stranded DNA.
IRAP

(1) بركش نشاگرهای ریزماهاره با یک مخلوط PCR افزوده شد.

ازمونهای زیر بر روی نمونه‌های مورد مطالعه برای فعالیت احتمالی رتروتراپسیوزون، انجام پذیرفت:

Tst1Bبا یکی از دو آغازگر ـLermalXF.STM01064R.STM01064F (جدول ۱، در .LermalXR

Mجموع ۱۲ واکنش برای هر نمونه)

(۱) با آغازگرهای رفت و بركشت ریزماهاره

(۲) با آغازگرهای رتروتراپسیوزون (شاهد)

(۳) با آغازگرهای RTR (شاهد آغازگرهای پردازش)

الکتروفورز به دو روش زل آغازر (۱/۵ آغازر، همراه با شاخش برای برآورد اندانه پانداها) و کابالاری (جدول ۱) انجام گرفت.

این نتایج الکتروفورز کابالاری به ترتیب RTR و IRAP مشابه است. برای بررسی فعالیت رتروتراپسیوزونها، از دو روش IRAP و Tst1A استفاده شد. برای روش IRAP و Tst1A از باندهای ایجاد شده بر روی زل آغازر عکس دیجیتال نهاد شد.

Morgan بررسی قرار گرفت.

استخراج گرفت. (جدول ۱) به طور جداگانه مورد استفاده قرار گرفت. تست ب انجام گرفت. برای استفاده و REMAP

۲) واکنش‌های زنجیره‌ای پلیمراز:

استخراج DNA از روش SSR-PCR شد که علاوه بر اختصاصی بودن برای هر مکان زنومی، محصول توپی شده از هر کروموزوم همولوگ حتی اکنون اندازه منفی داشته باشد. آغازگرهای استفاده شده داده در: Provan. LermalXR. LermalXF. STM01064. STM2005. STM1106 و STM1064 (۱۲) انجام شد. انتخاب ریزماهارها به گونه‌ای انجام شد که باعث برکشاندن از روش

Tst1A و STM1106 و STM2005 (۲) با ترتیب مشابه DNA و X.JX.VII.VI.VI.JI.۱۷. استخراج شده از ماده گیاهی اولیه منبع شماره: DNA (بلق از تکثیف کالوس) در هر سری واکنش IRAP

با عنوان شاهد استفاده شد.

و REMAP

برای انجام IRAP و REMAP و تست1A و IRAP استفاده شد. برای روش IRAP و Tst1A از دو روش استفاده شد. برای روش IRAP و Tst1A الکتروفورز به دو روش زل آغازر (۱/۵ آغازر، همراه با شاخش برای برآورد اندانه پانداها) و کابالاری (جدول ۱) انجام گرفت.
جدول 1 | آغازره های مورد استفاده در تحقيق حاضر

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tst1A</td>
<td>Tst1B</td>
<td>STM1064F</td>
</tr>
<tr>
<td></td>
<td>STM1064R</td>
<td>STM0025F</td>
<td>STM0025R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTAATCTGCTACTCATTCAA</td>
<td>GACAAAAAATAATCAATCCC</td>
<td>GTTCTTTGGTGTTTCTT</td>
</tr>
<tr>
<td></td>
<td>TTATTTCTGTTGTTGCTG</td>
<td>CTCACCACAAGAAATTC</td>
<td>CTAACAAAATGTACAACAAATTC</td>
</tr>
<tr>
<td></td>
<td>TTTAGTTCCTGTCCTGCAGGG</td>
<td>GTCAACCTTTACCATTGCTGG</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

نتایج

در بررسی های انجام شده بر روی 198 گیاهه بازیابی شده در جمعیت اولیه، تعداد 400 نشانگر ریزبماهواره بررسی شدند. از این تعداد، 40 نشانگر در مکانهای مورد انتظار (در محدوده 400bp) مشاهده نشدند. و 118 گیاهه از جمعیت مطالعه شده حداکثر یکی از نشانگرهای خود را از دست داده بودند.

شمارش کروموزومها در سه عدد از گیاهه‌های بازیابی شده (نمونه‌های 909D و 191C). نشان داد که علیرغم از دست دادن نشانگرهای ریزبماهواره، هیچ یک از کروموزوم‌های خود را از دست نداده اند. همچنین نتایج حاصل از الکترافيوز کلایالاری از نشان داد در واکنش برای PCR در سه نمونه (909D و 1000D) و Tst1B که در مجموع، از واکنش‌های Remap STM1064 ریزبماهواره با آغازگر STM1064 تکرار بوده تکرار STM1064 با آغازگر STM1064 100bp و STM1064 با آغازگر STM1064 100bp به دلیل کورهک بودن اندازه محسوب‌های PCR با در نمونه STM1064 100bp با در نمونه STM1064 100bp برای PCR با در نمو
گزارش فعالیت احتمالی ترانسپوزون‌ها هنگام کالوس‌زایی...

بحث

از آنها که هدف اولیه تحقیق حاضر، بررسی پایداری کروموزوم‌ها به کمک نشانگرهای ریزماهواره بوده، انتخاب ریزماهواره‌ای اختصاصی هر گروه زنیومی به منظور دریاپنا کروموزوم‌ها صورت گرفته بود. در این پژوهش با سه نمونه ناناپیدی شدن نشانگرها این فرض را تقویت کرد که ناناپیدی شدن نشانگرها ممکن است به دلایلی غیر از ناناپیدی در سنتوم زنیومی نیز روی دهد. بر این اساس، با مشاهده اندیزه‌های استاندارد، بررسی حساسیت این کروموزوم‌ها با استفاده از فناوری SSR-PCR انجام شده است.

سپ‌ظرفیت توانایی تغییرات محصولات آنزیمی و اکسوپلیزی در ناحیه‌های این کروموزوم‌ها به عنوان یک دلیل

امتحانی مطرح و فعالیت رتروترانسپوزون‌ها نیز در همین راستا بررسی شد.

مسیح فروتن، اندرو و ترن، ماکل و بیلکسون

زنتیک نوین/دوره سوم/شماره 2/تایبستان 1387
نتيجة مطالعة حاضر، في صورتين تأييد درسات آن والهندوية (19) فعال شهد ترترانسيوزون في سيزمانيزي فعال إجراءات محلية في دورة سلسلة ترترانسيوزون كراك د. والهندوية ن отметить تأثيره في دورة ترترانسيوزون في ترترانسيوزون في ترترانسيوزون

(20) في ترتيبيات مكتمل است Salem 100 bp

(21) Sugiimoto و Hirochika

وقالة ترترانسيوزون را متضمن تلقيح كوك/ك (كما من ترترانسيوزون في ترترانسيوزون ش. في سبيليتي يغوص في ترتيبيات ترترانسيوزون من ترتيبيات ترترانسيوزون في ترتيبيات ترترانسيوزون

(22) و (23) و (24)

(24) و (25)

(26) و (27)

(28) و (29)

(30) و (31)

(32) و (33)

(34) و (35)

(36) و (37)

(38) و (39) و (40)

(41) و (42)

(43) و (44)

(45) و (46)

(47) و (48)

(49) و (50)

(51) و (52)

(53) و (54)

(55) و (56)

(57) و (58)

(59) و (60)

(61) و (62)

(63) و (64)

(65) و (66)

(67) و (68)

(69) و (70)

(71) و (72)

(73) و (74)

(75) و (76)

(77) و (78)

(79) و (80)

(81) و (82)

(83) و (84)

(85) و (86)

(87) و (88)

(89) و (90)

(91) و (92)

(93) و (94)

(95) و (96)

(97) و (98)

(99) و (100)

(101) و (102)

(103) و (104)

(105) و (106)

(107) و (108)

(109) و (110)

(111) و (112)

(113) و (114)

(115) و (116)

(117) و (118)

(119) و (120)

(121) و (122)

(123) و (124)

(125) و (126)

(127) و (128)

(129) و (130)

(131) و (132)

(133) و (134)

(135) و (136)

(137) و (138)

(139) و (140)

(141) و (142)

(143) و (144)

(145) و (146)

(147) و (148)

(149) و (150)

(151) و (152)

(153) و (154)

(155) و (156)

(157) و (158)

(159) و (160)

(161) و (162)

(163) و (164)

(165) و (166)

(167) و (168)

(169) و (170)

(171) و (172)

(173) و (174)

(175) و (176)

(177) و (178)

(179) و (180)

(181) و (182)

(183) و (184)

(185) و (186)

(187) و (188)

(189) و (190)

(191) و (192)

(193) و (194)

(195) و (196)

(197) و (198)

(199) و (200)

(201) و (202)

(203) و (204)

(205) و (206)

(207) و (208)

(209) و (210)

(211) و (212)

(213) و (214)

(215) و (216)

(217) و (218)

(219) و (220)

(221) و (222)

(223) و (224)

(225) و (226)

(227) و (228)

(229) و (230)

(231) و (232)

(233) و (234)

(235) و (236)

(237) و (238)

(239) و (240)
گزارش فعالیت احتمالی ترانسپوزون‌ها هنگام کالوس‌زایی

شکل ۳ باندهای حاصل از واکنش REMAP برای نمونه‌های بازآمیزی شده از کالوس سیب‌زمینی.

(Invitrogen 100bp ladder)

۱. شاخه برش نمونه‌هایی (پیش از کالوس‌زایی) به همراه آغازگرهای SSR-PCR STM1064R و STM1064F (شاهد).

۲. نمونه ۰۹۹دی به همراه آغازگرهای Tst1B + STM1064R
۳. نمونه ۰۹۹دی به همراه آغازگرهای Tst1A + STM1064R
۴. نمونه ۱۰۰دی به همراه آغازگرهای Tst1B + STM1064R
۵. نمونه ۱۰۰دی به همراه آغازگرهای Tst1A + STM1064R
۶. نمونه ۱۹۱سی به همراه آغازگرهای Tst1B + STM1064R
۷. نمونه ۱۹۱سی به همراه آغازگرهای Tst1A + STM1064R
۸. نمونه ۰۹۹دی به همراه آغازگرهای Tst1B + STM1064F
۹. نمونه ۰۹۹دی به همراه آغازگرهای Tst1A + STM1064F
۱۰. نمونه ۱۰۰دی به همراه آغازگرهای Tst1B + STM1064F
۱۱. نمونه ۱۰۰دی به همراه آغازگرهای Tst1A + STM1064F
۱۲. نمونه ۱۹۱سی به همراه آغازگرهای Tst1B + STM1064F
۱۳. نمونه ۱۹۱سی به همراه آغازگرهای Tst1A + STM1064F

