مطالعه الگوی پروتئین برگی رقم جوی افضل تحت نش شوری

فراد فانحی،*، عبدالهادی حسین‌زاده، شوکت علیزاده، کاظم پوستینی، جواد فره‌چای

تشن شوری یکی از نش‌های غیر زندگی مهم و خاردار در کشاورزی است. در این تحقیق از روش پروتئومیکس به عنوان نظام شناسایی پروتئین‌های پاسخ دهنده تش شوری در رقم جوی افضل استفاده شد. به منظور مطالعه اثر تش شوری طولانی مدت بر روی الگوی پروتئین یو، بدور رقم افضل (تهیه شده از موسم نیال و بدر بعنوان مقام شوری در گلخانه آزمایشگاه زراعت و اصلاح نباتات دانشگاه تهران) وضع قرار گرفت. نمونه‌گیری با جدا کردن برگ جهار مشاهده شد که در اعمال نش‌های انجام شد. استخراج پروتئین کل بر اساس روش TCA استون گیری به‌هندی انجام شد. پروتئین‌های استخراج شده از برگ جو در بعد اول به وسیله زل‌های زئوت (ZPT) با شبیه پی اچ‌آی جداسازی شدند. در دو دوره زل‌های اکریل اسید با غلظت 12 درصد استفاده شد. نتایج حاصل از تجزیه زل‌های ناتن داد که از میان 35 تکه پروتئین دارای کردار یه‌بندی ثابت و 42 تکه دارای تفاوت معنی‌دار بین تیمارها بودند که از میان آنها 28 تکه افزایش بین و 24 تکه کاهش بین داشتند. نتایج 20 تکه پروتئن با استفاده از سطح جرمی MALDI-TOF-TOF MALDI-TOF، Oxygenevolving enhancer protein (OEEP)، سلولار دی‌فسفاتکیناز، Rubisco، کلستین درکوبیلاز، Translationally-controlled diphosphate kinase و پروتئین‌های ریبونوئمری و tumor protein پروتئین‌های دخیل هستند.
نتش شوری از مهم‌ترین عوامل محدود کننده پروتئین دارد. تحقیق‌های زده می‌شود از 20% از کل زمین‌های جهان و ویروس‌های سایر همکار از ایران تحت تاثیر شوری است.1) شوری بیش از همه‌گانه مورد محصولات رازی محصول می‌شود. تخمین زده شده پیش از پاتریک هستند (22). تخمین می‌باشد که 24 میلیون

پاتریک از این انتخاب ویروس و خصوصیات ارائه‌شده در سطح مولکولی را در موارد مربوط به طبقه‌بندی درwa مورد استفاده قرار گرفته‌اند. در این روند، در بافت‌ها و سیگناهای سطوح دیگر این نتایج می‌باشد. شوری جو پدیده شده در رشد در نواحی حاشیه‌ای با دسته‌بندی کم یاده هم معمول است.4)

بیشترین مثابه می‌باشد، دانسته از طریق پروتئین‌ها و شوری نتیجه‌گیری می‌شود. بررسی پایه دهده را شناسایی کردن (19).

پروتئوم‌سنجی در این رام کمک زیادی به ما کرد است. پروتئوم‌سنجی سیستمی از گیاهان در پایش به نشانه‌های مهیج انجام شده است. مزالو و همکاران (2000) در بررسی اثر نش روی دیواره‌های دندان و حساس، شوری بر روی رشد و نزول مقدار و حساسیت

پروتئین پایه دهده را شناسایی کردن (19).

داشتن دوکی و همکاران در سال 2006 به بررسی گیاه‌پروری پایه پروتئین در بافت پری انگلیکن تحت نش شوری پرداخته‌اند. در این تحقیق زنده‌بودن IR 751 به عنوان مقادیر شوری انگلیکن در بافت شده و میزان روز پس از عمل نش شوری دانه‌هایه‌های نمونه‌گیری از بافت پلی‌اکسید

جنگ پری انگلیکن گرفته است. نمونه‌گیری از بافت پلی‌اکسید در سطح از لحاظ اندازه ترکیبی نشان می‌دهد. یکی از راه‌های از راه‌های گزینش گیاهان می‌باشد (دلارانه‌های SAGE و SAGE, 1987). است. برای مثال با استفاده از AFLP روندشناسی SAGE که شناسایی شوری mRNA در آرام‌سیره‌سیس پنج برای توانایی بایست (20). در تحقیق مشابهی الگوی پیان زن‌های بیشتر نش شوری پری انگلیکن برای شرایط لازم داشته که نش شوری در مناظر انتخاب شد. شوری که افتاده از این نش شوری بنیان‌گذاری می‌شود (15). با وجود بهتر بلاقات بیشترانه‌ها در تجربه انسان زن‌های جدید تغییر بیان اتصالات کمی و کیفی از فرآورده نهایی زن‌ها (پروتئین‌ها) در اختیار ما را نمی‌دهد. این میزان در پروتئین رابطه

مستقیم وجود تاریکی بخصوص در مورد پروتئین‌های فراوانی کم. از سوی دیگر سیستمی از پروتئین‌ها از ساخته شدن دنیار تغییرات پس از ترجمه می‌شوند که باید فعالیت ویژه و مجزای

3) Microarray

زنبیلین‌هایی که در انتهای 1089

62
مواد و روش‌ها

در این تحقیق رقم جوی افزایش که به عنوان ماده سنگین مورد استفاده قرار گرفت. بذور نمونه‌های گیاهی در گلدان‌های ۲۵ لیتری حاوی پرلیت و کوکوپتین (به نسبت ۳ به ۱) در گلخانه‌ای آزمایشگاه گروه زراعت و اصلاح نباتات دانشکده کشاورزی دانشگاه تهران کاشت شدند. بعد از مرحله دو برگ گیاهان با استفاده از محلول غلیظ هوگلد، آبیاری شدند و این کار تا زمان اعمال تشیع شوری به مدت ۲۱ روز ادامه یافت. NaCl نش از مقدار صفر (به عنوان شانه)، و ۳۰۰ میلی‌مولار NaCl استفاده شد. تشیع شوری به مدت ۲۱ روز اعمال و سپس نمونه‌گیری گیری انجام گرفت. نمونه‌های برگی در نیتروژن ایالات متحده و نا هنگام استخراج پروتئین در دمای ۸۰ درجه سانتی‌گراد نگهداری شدند.

اندازه‌گیری محتوی سدیم و پتاسیم

مقدار از برگ‌های (برگ چهارم) یک دانه آب با مقدار ۳۵ میلی‌لیتر غلظت سدیم و پتاسیم از روش هضم خشک استفاده شد (۲۵).

استخراج پروتئین و الکتروفورز دو بعدی

استخراج پروتئین از یک باغ در بکر (برگ چهارم) بر اساس روش دامورال و همکاران (۱۹۶۴) با ادغام تغییرات انجام گرفت (۸). برای اندماج گیری میزان غلظت پروتئین نمونه‌ها از روش برادفوورد (۱۹۶۰) استفاده شد (۶). در این آزمایش برای وارد نمونه پروتئین‌ها با دخالت زل‌های با شیب ۵۴-۲۵ در درسته بازچیدن دفع آ自助 به همراه کمک‌های از جمله وارد زل شدند. عمل را جذب در طول شب و به طور متوسط ۱۴ تا ۱۶ ساعت طول کشید. در این تحقیق از دستگاه پولیمر فور II ساخت شرکت آخرماشین برای انجام بیان (IELF) استفاده شد. برای انجام بعد از دستگاه

روزهای این گیاه در سطح مختلف صفر، ۱۵۰، ۳۰۰ و ۴۰۰ میلی‌مولار کلرید سدیم تیمار شدند. سپس از ۳۰ روز نمونه‌های برگی جمع آوری شده به وسیله الکتروفورز دو بعدی بررسی شدند. در مجموع ۱۰۲ لکه پروتئینی در مقایسه با شاهد (سطح صفر نمک) شامل بودند. این کار تا زمان استخراج پروتئین‌ها را در سطح ۲۰۰ میلی‌مولار گزارش کردند. تعداد ۲۳ تا این پروتئین‌ها شناسایی شد که در مقایسه با تنش اکسیداز، سنتر گلیسین بیشتر، فنترم، ATP نش جزئی پروتئین، سمن زدایی سیتون و فعالیت پروتئاز دخیل بودند. باعث شده گلیسین بیشتر یک

Nipponbare (۲۰۰۴) بر روی میکروسکوپ واریه

تشیع شوری در اعمال کردند. در این آزمایش، گیاه‌های این رقم که در هفته سوم رشد خود بودند، با غلظت ۱۰۰ میلی‌مولار کلرید سدیم، تیمار شدند. در زمان‌های ۲۴، ۴۸ و ۷۲ ساعت پس از اعمال نش نمونه‌های ریشه گرفتن شد و پروتئین‌ها کل را استخراج کردند. تعداد ۱۱۰۰ لکه پروتئینی تکراری در مورد تحقیق قرار گرفت. از این تعداد لکه ۳۴ لکه پروتئین افرازی بود. و ۲۰ لکه پروتئینی کاهش ریشه ناش داشت. به‌طور کلی طیف بندهای جرمی و نیز جستجوی باعث شدند اطلاعات تعداد جهار لکه به عنوان پروتئین‌های دخیل در مقایسه با نش شوری شناسایی شدند و

پروتئین‌ها گلدک-UDP آنتی‌کن

دانه‌های پروتئین‌ها از این لکه به عنوان UDP پروتئین‌های دیگر از این لکه به عنوان Pirofectora و سیستوکروم C اکسیداز، شناسایی و گزارش گردید. این پروتئین‌ها در نظیم متابولیسم نیتروژن، کربوهیدرات و

انرژی نشکل‌ها (۲۹).

با توجه به اینکه اطلاعات موجود در زمینه پاسخ به تشیع شوری در گایه خیابان و اندازه‌بندی این تحقیق به مظهر ضعیفی به اطلاعات بیشتر در زمینه شناسایی پروتئین‌های دخیل در پاش به تشیع شوری طولانی‌مدت در گایه جو انجام شد.

۲ UDP-glucose pyrophosphorylase

۳ Cytochrome C oxidase

4 Rehydration

تاریخ انتشار: ۱۳۸۹/۱۲/۱۸

زمین‌کار نوین/دوره پنجم/شماره ۱۸/تاپور

فرد فانی، عبدالهادی حسن زاده، هوشنگ علی‌زاده، کاظم پورتکیو، جواد فرهنگی
مطالعه الگوی پروتوتوم برگی رقم جوی افضل تحت نش شوری

بحث

در بررسی پروتوتوم برگ به منظور بروز اثر نش شوری بر روی الگوی پروتوتوم برگ جوی رقم افضل گیاهچی‌های 4 برگ به مدت 21 در معرض غلظت 300 میلی مولار NaCl قرار گرفتند. برای مقایسه تیمار شوری و کنترل از آزمون 1 استفاده شد و نتایج نشان داد که تفاوت معنی‌داری بین تیمار شوری و شاهد در سطح 1 درصد وجود دارد. چنانچه مشاهده می‌شود مقدار سدیم و پتاسیم در اعمال نش به ترتیب افزایش و کاهش یافته‌اند (شکل 1)

حلقه‌های کنترل (صرف و 300 میلی مولار NaCl و 100 میلی مولار گیاه گرفتند. پروتوتوم برگی گیاهچی‌های چهار گیاهچی‌های تحت نش شوری و نرم مبتنی استخراج شدند. پس از تجزیه زلیل‌های رنگ‌آمیزی شده با بیانات تقریبی تعیین 135 کلمه پروتوتومی به طور نکار یافته در زلیل‌های فیزیولوژیک و مورد تجزیه آمیزی قرار گرفتند. به منظور بررسی تغییرات کمی بین پروتوتومی‌های از مقدار درصد حجمی هر لگه به عنوان یک مقدار نرمال شده استفاده شد. داده‌های حاصل سپس در نرم افزار استخراج شدند. از آزمون‌هایی که استفاده محاسبه خوراکی بوده و نشان دهنده در نرم‌افزار 5 مورد استخراج شده. نتایج حاصل از آزمون تی استفاده شده که تعادل 92 کلمه پروتوتومی در مقیاسه تیمار شوری با شاهد تغییر 1/5 برای بیان نشان داده می‌شود. از این تعداد 48 کلمه پروتوتومی افزایش بین و تعداد 44 کاهش بین نشان دادند. میزان تعداد از این پروتوتومی در شکل 2 نشان دادند.

References:

[1] مطالعه الگوی پروتوتوم برگی رقم جوی افضل تحت نش شوری.

©هیچ‌کسی بدون ارائه طبیعی، هر چه اولیه، کامپیوتر، جوده فرهنگی، نظریه، گرافیک، هر چه اولیه، کامپیوتر، جوده فرهنگی， هر چه اولیه، کامپیوتر، جوده فرهنگی، هر چه اولیه، کامپیوتر، جوده فرهنگی， هر چه اولیه، کامپیوتر، جوده فرهنگی، هر چه اولیه، کامپیوتر، جوده فرهنگی
شناختی پروتئین‌های پاسخ دهنده به نش شوری از بین لکه‌های پروتئینی که تغییری در بین داشته‌تعداد MALDI-TOF-TOF ۶۵ لکه با استفاده از طیف سنج جرمی شناسایی شدند. پروتئین‌های شناسایی شده در جدول-۲ آورده شده‌اند. در بین تمام پروتئین‌های شناسایی شده همبستگی خویی بین مقدار pl و مانندی چندین نیم‌پرا به ترتیب تحت نش تنش مدت و بلند مدت شوری ۱/۳ و ۲/۵ برابر افزایش بیان نشان داد. یکی از دلایل افزایش فعالیت رایپاسکو اکتیوژ در نش طولانی مدت پویا خلال pI کاهش هیداپی روزنه‌ای و کاهش سطح پی CO2 و استرومایا متنجر به افزایش سرعت غیرفعال شدن رایپاسکو با وسیله اتصال فندهای مهار کننده به جاجی اکتیوئات سرعت آنزیم می‌باید.

یکی از پروتئین‌های که بیان ان تحت نش طولانی مدت شوری کاهش نشان داد که Oxygen-evolving enhancer protein ۲ (به لاتین OEE2) در نش نشان داد (۳) این گروه مشخص شد بیان OEE2 در بین باعث می‌شود شب یک صفحه زمانی که نش در بزرگ بین افزایش می‌گردد (۴). این پروتئین‌ها هم ۳۳ (KDa) و OEE1 (۱۶ KDa) و OEE2 (۲۳ KDa) کریپایست قرار می‌گیرند (۲۷). مشخص شده است که کلیپاسک ۵ ATPase Associated with diverse cellular Activities ۶ leaf lamina
پانتون‌ها ایفا می‌کند. این جریان از برخورد آب H2O لله به مقدار موارد سولوم. لیگنبنشن درای دمای و اثرات مکانیزه در cp31BHv و cp31AHv نش دارد. در این پروتئین‌های مفصل شونده با RNA کروپوسنت و همکاران (1999) نشان دادند ین این پروتئین‌ها با مراحل نماین و برانگ های بلوغ دارند (35). به نظر باید تحت نگرش مثبت نور است.

پروتئین A (که 9) یکی از پروتئین‌های پایه دهنده به ویام سیریک اسید است که نش دشوری افزایش 17 برای در بیان نشان داده است. (31). این مدل رگ جک در مرجع رشد روی چیپ پنوماخوپلیکشن نش می‌دهد. با داشت است. (12).

لکه شماره 18 به عنوان پروتئین شیب جریان شناسایی شد. این پروتئین تحت نش دشوری افزایش 2 برای در بیان نشان داده است. جریان‌ها بطور جوانان در داشت گنج، جوانان و گرو و همچنین در برگ‌های بالغ در واکنش به حمله پانن و بین می‌شوند. پروتئین‌های شیب جریان به عنوان پروتئین‌های مرتب با می‌شود. پروتئین‌های شیب جریان به عنوان پروتئین‌های مرتب با می‌شود. تولید H2O2 شرکتی می‌دهد. تولید سیریک دیسمپراتی حاکی از نشینه این دسته از پروتئین‌ها در استحکام دیور های و مقامت در برای حمله پانن و یک نش های گرندین است (37). دیو و همکاران (2002) افزایش یا در سیریک را از آپلیکیشن تبکو تحت نش دشوری گزارش کردند (31). کهر و همکاران (2005) افزایش یا در سیریک در آوان آکسکل کارا گزارش کردند (16). در این پروتئین‌های شناسایی شده در پروتئین ریزوموده به چش می‌خورید (که 9) نش دشوری یک ۲۲ و ۳۳. جریان پروتئین‌های سلولی گداهن نش در پروتئین‌های ریزوموده به چش می‌خورید. در برخورد با همکاران نشینه گداهی نش. پروتئین‌ها ریزوموده در شرایط درمانی با هورمون گداهی اکسبین اکسپرسیون دیده شده است (31). یکان پروتئین ریزوموده PI با (۴/۳) و وزن مولکولی ۱۲/۱ به میزان ۲/۷ در H2O2 به سهولت تحت نش دشوری از کیلپیکس فنوسینم II در OEE غشاء بیلاردینی چند می‌شود. لکه ۹ و ۷ به عنوان پروتئین‌های دکچیرکسیالا سه‌گانه هدایت دو به ترتیب ۴۶ و ۲۴ افزایش پان دانه دارد. غیاب روش تئوری‌دانی با آزادی کردن از گلیپسین از را آب بسیار تبدیل می‌کند. این واکنش جزئی از جریان گلی اکسپرسیون می‌شود. این چرخه در اثر عفونتی اکسپرنزی را ایجاد پس از بازیل تکثیر می‌کند. CO2 در مطالعه‌های کوتای و همکاران (2005) بر روی برگ برنج نش دشوری نشان داده شده روابط شد پان پروتئین‌های دلخی در جریان گلی اکسپرسیون دکچیرکسیالا افزایش یافته‌اند (16).

Translational controlled لکه شماره 13 به عنوان پروتئین‌های (CTCP) تی‌ریوپروتئین سیریک به کلسیم می‌باشد اما همچنین از خانواده‌های پروتئین‌های مفصل شونده به کلسیم تعلق دارد. افزایش یکان این پروتئین تحت نش دشوری در گیاهان برنج و آرایدوپسیس گزارش شده است. این پروتئین در انتقال سیگنال از نش دشوری از طرف اتصال به کلسیم نش دش است (10). نوکلوریدی دی‌نفست کیتین (که 15) یکی دیگر از پروتئین‌های پان دانه آن در نش دشوری بیش از ۱/۵ برای افزایش داشته است. نش اصلی آن سیستم نوکلورید دی‌ری نفست‌های تی‌ریوپروتئین (CTP, UTP, GTP) های در پی دنست نش دشوری متفاوت مانند خشکی (۱۱) و (۱۰)، سرمای ۱۴ (۱۶) و شوری (۱۲) گزارش شده است. نوکلوریدی دی‌نفست کیتین به عنوان یک پروتئین مربوط با انتوا نفست‌های تی‌ریوپروتئین (10000 گزارش بایان افزایش ین برای را تحت نش دشوری در پنیکل برگ گزارش کردن (7). افزایش یکان این پروتئین در آرایدوپسیس نمک به کاهش گونه‌‌های عفونتی آکسپرسیون (ROS) و به‌هور همکاری به اندازه است. نش دشوری گیاهان است. یکن ان آکسپرسیون (10) به نش دشوری بانان افزایش یافته است. یکن ان آکسپرسیون تهذیب‌ها و تولید در موجود H2O2 در و در واکنش به صدمه دیدن یا حمله.
| Spot ID | The pI/MW(kDa) | Exp pI/MW(kDa) | MS Score | % Coverage | Identity | gi|Number |
|---------|---------------|---------------|----------|------------|--|-------------|
| 1 | 8.84/27.3 | 6.34/26 | 312 | 30 | Oxygen-evolving enhancer protein 2, chloroplas | gi|131394 |
| 2 | 8.92/17.3 | 5.7/14 | 361 | 56 | ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit | gi|4038699 |
| 3 | 8.98/19.4 | 5.7/10 | 287 | 41 | Ribulose bisphosphate carboxylase small chain | gi|3914588 |
| 4 | 8.92/17.3 | 5.4/13 | 366 | 53 | Ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit | gi|4038699 |
| 7 | 4.52/11.2 | 4.4/16 | 80 | 10 | ribosomal protein P1 [Triticum aestivum] | gi|57471718 |
| 8 | 7.62/20.5 | 4.6/24 | 78 | 49 | Ribulose bisphosphate carboxylase small chain | gi|585791 |
| 10 | 4.36/21.6 | 4.4/33 | 134 | 28 | predicted protein [Physcomitrella patens subsp. patens] | gi|168067984 |
| 11 | 4.61/31.9 | 4.5/31 | 164 | 25 | cp31AHv protein [Hordeum vulgare subsp. vulgare] | gi|3550467 |
| 12 | 4.76/30.6 | 4.5/29 | 410 | 37 | cp31BHv [Hordeum vulgare subsp. vulgare] | gi|3550483 |
| 13 | 4.53/18.9 | 4.7/25 | 120 | 27 | Translationally-controlled tumor protein homolog | gi|20140865 |
| 14 | 5.68/27.1 | 5.4/29 | 112 | 14 | predicted protein [Populus trichocarpa] | gi|222853040 |
| 15 | 6.30/16.5 | 6.5/14 | 256 | 35 | nucleoside diphosphate kinase [Lolium perenne] | gi|9652119 |
| 16 | 5.84/13.3 | 5.3/32 | 188 | 49 | Ribulose bisphosphate carboxylase small chain | gi|132107 |
| 17 | 6.19/65.5 | 5.1/27 | 81 | 26 | polyamine oxidase [Hordeum vulgare subsp. vulgare] | gi|4485487 |
| 18 | 6.01/22.0 | 5.6/22 | 94 | 27 | germin-like protein 1 [Oryza sativa] | gi|4239821 |
| 19 | 5.03/23.2 | 4.6/47 | 244 | 33 | 30S ribosomal protein S1 [Oryza sativa] | gi|149391139 |
| 20 | 5.24/8.1 | 4.9/42 | 73 | 42 | Subtilisin-chymotrypsin inhibitor Cl-1B, putative, expressed | gi|7756084 |
| 21 | 7.59/47.4 | 5.5/43 | 360 | 44 | Ribulose bisphosphate carboxylase/oxygenase activase | gi|10720253 |
| 22 | 5.36/16.3 | 4.9/19 | 324 | 44 | ribosomal protein L12 homolog [Oryza sativa] | gi|2331135 |
| 23 | 5.36/16.3 | 4.8/19 | 433 | 50 | ribosomal protein L12 homolog [Oryza sativa] | gi|2331135 |
| 24 | 4.43/12.6 | 5.1/17 | 60 | 69 | hypothetical protein [Oryza sativa Japonica Group] | gi|34393461 |
| 25 | 9.16/19.4 | 5.01/11 | 155 | 19 | Os04g0530600 [Oryza sativa (japonica cultivar-group)] | gi|115459582 |
20. Motoaki Seki1, Mari Narusaka1,2, Junko Ishida1,1, Tomohiko Nanjo2,7, Miki Fujita1, Youko Oono, Asako Kamiya, Makio Nakajima, Akiko Enju, Tetsuya Sakurai, Masakazu Satou1, Kenji Akiyama1, Teruaki Taji2,3, Kazuko Yamaguchi-Shinozaki4, Piero Carmeci, Jun Kawai, Yoshihide Hayashizaki and Kazuo Shinozaki. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. The Plant Journal (2002) 31(3), 279-292.

