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Investigating the expression of miR160 and miR393 and their
target genes in sugarcane under waterlogging stress

Tshel G Sl TSkl gage 5 T Bslosls W (8 s
o ISzils ( alS K5 5 5 dige 03,5 ( AS (@alBa 5 Ko Al el S ant gl Jils )
Ol Glaal Glaal Ol s dugd o5l (55,538
g o8y (g5, 5LaS 0 aSils ( ALS Sf 5 M5 pwdige 03,5 il Glabial Glakial 5 s Y

Qlﬂi Sl sal Glsal Ol o
Ghezzi R?, Nejadsadeghi L*?, Mehdikhanlou Kh?, Nabati Ahmadi D?

1- MSc Graduate Student of Genetics and Plant Breeding, Plant Production and
Genetics Department, Faculty of Agriculture, Shahid Chamran University of Ahvaz,
Ahvaz, Iran
2- Assistant Professor, Assistant Professor, Associate Professor, Plant Production
and Genetics Department, Faculty of Agriculture, Shahid Chamran University of
Ahvaz, Ahvaz, Iran (Corresponding author: L.nejadsadeghi@scu.ac.ir)

L.nejadsadeghi@scu.ac.ir : S 5 ;S oy « 31K J stn o i 53

RTL S
1947 Ol ¥ o ko cpddixd 059
1Y0 - VAP axio

(\Y'\/\'/YV U’:j'i‘)"’ C’JU_\\C.\/.f/Y. I@LLJJ@JU) ° :

49 G 55 AR o0 B 1) K05 3 Khos § Ay 45 Sl i ) o S S 31 O B 2
Sl 0 o Bl b o3 4 oL 4 T Ol Sl (21 b ol Jozmio (S8 6
LMIRNA oadd o8 51 A7 Oledbl 3929 pus o 0510 Ky pid Olo) Doe g Al
20 Ol 31 Jobr b wlolp (B8 5 4 Ko ol Gl 30 BOT Bua Gy 9
e BT Bua slo; 9 MIR393 9 MIR160 (pg5 sgm Ao 3 0316l W& § S OlaLS
CP48- &,k 4y 19 9 33 qRT-PCR b9 3 oali! b oy Oly § sl AFB2 g AEF17
ey 2390 Wl Ol b dwlio Ho JBE S5 395 1F 9 Y sl oo CP69-1062 g 103
Sl con 4 ylg 98 50 MIR393 9 MIR160 18 HLiS omwd Ol 4w lio gls .od 5 4518
AFB2 9 ARF17 oz Bud 0F oly bl 30 ol i Hles i 9 awdls Ol ial 390 5
395 1F 5 )3 AFB2 9 ARFL7 Sy » MiR393 § MIR160 e aubd i .ol O3bles

98 g didr 3 o5 31 CPA8-103 40519 b dwylin 33 CPB9-1062 & 519 30 ywimod 393 5 shud

Soals slaejly

3 "!O.N
RNA 3,

Slep sbaly
Sus sy


https://mg.genetics.ir/article-1-1778-en.html

[ Downloaded from mg.genetics.ir on 2026-02-11 ]

OLSas 5 Salosls W

B sy 9 MiR393 9 MIR160 Oy (owy g

Loy GBS gl el 4 S il S sl
23 R o QLS &S (gsba eld S plse glaad
Wy gl ey s B e ls DL L oale
L3 ged

3 Sl Glodizmy Dl oy S f SN 4 Jeod
SLoosSb 5 A5 w4 edas muly jole oo Jlats S Jeld
S 1 olS gad 5 A oS Sl (e3mte pliardsn 5 S5 5
505 (e iss Jolse Ol 3 okl ol ey dims o I3 G
st o LRNAG, LBy 3 sedd Oleoels 15~
5o (Zhang 2015) ol eas 5518 il Jaes
Yo U & et S5 GLRNA 515 55 alS SLRNA
Log MIR Glad5 s, amd 5 Lides A5lS5 YF U
Ly gl 5l many aisls 534S A2l 1l 3l s RNA
ol PE g 5 s SN @ el dhaa ) sed
'C'“Li 3 1y el 28 LRNA 5, (Zhang and Wang 2015)
Gl S @ ol 5 S e (5L e g iS4 ObLS
B sy e bl Gk Sl Ol by b
o yorme Sllad 5o ad G b Sl L5 Gl lal) Sl s,
Wl S 4 e gl (pl 38 0 oo (55 mRNA
LS w53 5 0SS Gla0) Sl basis s Ol Olgen 5 Joms
XU ) 35d 00 Saoms dolusl Lol 5 40 olS 00 S50 5 Ol
S gl 03 05 0k RS e pl (et al. 2019
Ol Ly S5 Jood lp Gl el S 5
SGla ol ol slee b S Gk Sl &S a0 sleda
By Jos 20l

oS 5l sal css S sS RNA cla JI5 Lo 5 4520
Glas sl cliis peaipd SRS Cow g skl
RNA, ol sl plold a4 e Slabs 5 (Glanslie
Ll 1) ol 28 s b Sba i @ olS uly 2 &8 LS
Co MIR395 Jls (¢l ,, (Sunkar and Zhu 2004) .S .
s ool S s s Sl oS s i O Ll i
Ll i 5o ol L Ol (Rl 5 5 S 35S Lyl 5 55 RNA
w5 (51, MIR167 5 MIR393 MIR160 by & slo (53l

)‘ L;"‘".’J‘.J) E) (ARF) U,:..S‘ o oolad Cwli LsLh)}ISU d:"éD

doddo
3l 1y o5 QLS s es g s Shae o SV S
Wang et al. ) &S o ool |, Ly S& doys Vo spus
ot b ot s W6 b S5 s Slas 2016
S S A GBS il s b
oS Gl 5 A3, &l Gler S L ogletidy o658
T ST P PV I O JORE R S
Gomathi ) 555 doys YO B0 oy olS pl 5 Ses 2als
elSe 5 (S35 s 50 Ll 3 2 S5 (and Chandran 2009
dr g Ml o B8 il d oy 53 S LS S5
S SaS B8 Ll 5 s Jseams Laim ol laisl
5y adsl Jle 53 eesms ol 055 s il Ll s
by oo 5 Son Rl b il e 5 o ol (68 IS0
Jainet) 555 5 Shos alS 4z olS A3, S [2alS
SRS 6 b S i ool el i Gl 2017
S8 Vsl ralS w53 45 Sl oy B 3 O30S
rl pode bl o S| Jius s o s 2lps Boe o
Sl e S S sl B
Sy e pole 5 O Gl s 5 4, sbdshe
O o S5l (Ko 2 5 s e 13 GG
il aals ol e Bl 10 ) e L Sb e b 25
WO 6 Jel il sl K25 oS gl 8l Gl 5
S ,» .(Omary and Izuno 1995) <ol Olus ;3 e la
L dseme o5k @ 05nSt 35S 4 JSTy 5o baaly ) S50
el ol pslie S sl gladiy; LS, (S
ol &S 18 3 LS sdalise (VoY) LG 5 S
edalie S 3 Slas (RalS 2o Sl V0 & ens 25
S Sl 5 S el glaady, SIS0l
Sl G824 maly s Jese OLLS s Jsens
5ol @ e ol glaais, ol (Fukao et al. 2019)
LS o edge p olS Jol glanis, Cle s 1, ol sl
Lo S 2 (V0oV) OLKes 5 &l Lang oS b o

I Abiotic stresses

VPV Ll 1Y o ylouis [ pdoxd 0590 [y 99 Sk -



https://mg.genetics.ir/article-1-1778-en.html

[ Downloaded from mg.genetics.ir on 2026-02-11 ]

S sy 3 9 MiIR393 9 MIR160 Ol (ow) g

0L 5 Balosls DU

CP69-1062 az s .das o olamsl 35 o |, S ciS
S S5 Al e ey CP48-103 anjly 5 o ible
5ol paecS oy S e Sl i oIS
(B8 55 lesl jslea Al e ey (sl 38 £
S Sosba Ol slacis s Olopes &) o OIS
o3ls I3 ey S b VU e sl 53w ol gl
Sled 4y ates odd S5 oIl Lyl 5 .(Jain et al. 2017) Lok
Syore st 4y 5 dald Jled s 3 5 VY Y o o
Ly bl Selul s bl oS 5L 4 a
s ol gl 88 Cose A OLL 1 ey oL
S gt 3| g 5 LS )l Lol 5l ais ol jenas OlalS
O35 5 wlsn bl o3 035 wile 54158550 Slbo 4l
GAS Ll (p 8 /0 0) 235) 35 a3l b el slaats,
Slapll 51 St mlans e Sl baads) sl pl gl S
OF 5 L B iy sdiud 31 e 5 A I olse
5 olS ol slaaty; 5 olnbsl a5 SeSw glps glaaty,
IV WA PV R NE e WY
OA¥8) 05, sy @ 3 S 85808 5 JbsJS Ol
Slakad w4 badised 036 S 5 ke pl gl el s
ol s s el sl ¢J§ O i 5 LAS S
ARRRGSR VIPERPIN WAPE (- R VST T PO RC R Wk KO P PON
Cowddy oylae LAS gy Sl aids )3 5 Frer 5 aids
L el YVe 5 PY0 PPY lazse Jsb 53 o s el
ba Ly S e ad il 3 e sl olKins I eslinl
Cosas () 5 (D d()) Jga s 5l osliad b o s A5 53,05 5
el

Chl.a:[12.7 (0D gg3) - 2.69 (0D g,5)] x [V/1000 x W] (V)

Chl.b:[22.9 (0Dgs) - 4.68 (0De3)] x [V/1000 x W] (Y)

Car:[(1000 x QD 47p — 1.82Chla — 85.02Chlb) / 198] x
(V/1000 x W) (1)

= VoGl 00 e dsb s 55 0dr OD L Ly, o
el 08 ey gad 5 055 W e S a5l Jslone
dw 53 55 0553 OLL 51 e dhsliBl Lzl S 51 (g1 S e

sl ol oo ol bl (8 8 e (S5l LSS

o5 sl s bl il 5L s 50 ST 4 edias el a0
S s e B ks e 0L Ol Rl 31 LRNA G (ol
L miR167 , mMiR393 MiR160 .l sk AL _:slS ARF
3 A5 Rl o ST g ekas muly a0 Ol 258 e
o oge ) Vsl 5 edd 25 Ll s s olalS e
(Sunkar et al. 2012) Wi e 25 4 olS Jass il
dozr § e s 53 3 g0 0l Chli- sla0lKe 4 MIR160
ol 5 0T Ol 5 o e S S 5 (5o 053
sdas &by lalse RNA ;) (Rhoades et al. 2012) .S
5 S ol 55 Ol jpam 5 das e 3 Gaa | ST
e g b LS 4 el 5o o5 OLLS ol
51,5 S miR393 (Gentile et al. 2013) ol ol 5158
oy iy s aS Sl OS5 eds Clable LBRNA 4
2 G iS4 OlalS el 3 5 ales slaphtl aae s
LS elpls pa 3 Sda 0 Ok RNAG,
(Bianetal 2012) .S . J x5 1, AFB2 ., .5l

5 MIR393 5 MIR160 w45 5 =)y lalllas ol &y 5 L
S ey skien AFB2 5 ARFL7 w O Gods glasss
los laades S USE 5 SBLE 5 w0 olS Al 53 ol
sl bl y s bl B8 ks s A5 an)ly 5o o
W38 13 sy 3550 QRT-PCR LSS S8 4y Wl

g, 9 Slgo
Ol A o> (53,5LES 0aSEils GllS 55 &b
Pl VFee il BTG il Ly alols s 5 Sl
CP48-103 «u 15 55 il iS5l ol slaazealS .3
plo 5 i ane g Sliged 4o | &S CPB9-1062
Vooamm) (Sadl GOl s Lsy eld 4y b
SsaSS SIS Ll s 55 55, VO e 4 5 S (p 55k
oAb B s s dosst hlsl bl addllae nl s
e 3 Al 53 ol A sl 5SS au b alas SUis
Ol o Sis lacas 5 CiS 3 s gl

25 g Sl ko Vel Gl psemme 53 5 dites Ol


https://mg.genetics.ir/article-1-1778-en.html

OLSas 5 Salosls W

B sy 9 MiR393 9 MIR160 Oy (owy g

Olaebl (gl 5. S )50 Oligo AT o gee ST 5l oslinal
o b gla ST olatl s Slas 5w 1L
ks s CONA o Jlasl gles o xe 05 5 10y eI R S
) eslizad b sl ju CDNA (slakisas 55, ,» PCR iSls
5 b osken Colg 3 .38 e olantl gla S5
SYBR HiFi oS s gRT-PCR 5, 5l 0} oo Ol aslis
Sl ases gl eslanal Cb L oS L5 el Mix Plus
o3l b o3ls b (3ladlay 5 A eslizal (S5 1SS am
da b ¢l s Actin o5 5 LRNA S, ¢!, IRNA 18s
ol 2 ANt gy 3l esliad b bags Oly awlie (o8 S plxs!
3 55 bagl G Glags 5 LRNA 5 Ol i Ol 5 A3
52 5 LSD a3l Sl eslinal b (soles s sl 5 4l
5ed) R Sl5le 5 51 eslinad b doss 0 5 ) (5ol e pelaw
$lr Gas o (Liuet al, 2012) s S ooy (F YV
PSRNATarget i3l 5 5l eslizal L miR393 5 miR160
3 eslawad L5 (http://plantgrn.noble.org/psRNATarget)
ol s agmge gbeesls SWS a5 el el gl el
oS0k (Dai etal. 2018) b S plawil Si olS (5| NCBI
Sple s Sl eslid b g Gda lad) e PSS S

S e 5 5 o5 2 0ENEMANIA N

:\Jf‘_;:.lL.« a5 Ay les s eslital Oy By eals 18
L miR393 5 MiR160 (s, ST > b .uas g,
soj ¢l s mIRNA Primer Designer Slsle 5 5l eslanal
S50 Pimer3 i5le 5 5l eslizal L AFB2 5 ARFL7 G
glAel 238 o) 50 Varkonyi-Gasic (2007) Jasll) sz
Jszly AU 5 eslizad b dsls 5 ets 25 olalS 51 S RNA
el o5l oS 0 ol siws el 5 Invitrogen s 5
PP L 71 [ IR VL WA VPR CeICH W - PR S PCIC IR ¢
Sleeds #l sl GRNA I s 55 DNA Sl Gl g
A eslizul (Invitrogen) Jes)l; sies e 5 DNase | o 5l
D4 u.;’})b u*’jl? E) C,‘.:ﬁ..:s LS‘)‘J aJ..aT S d o RNA })O_ﬂ )\
J5 5 Slesb iy 4 slal csas RNA kS 5 oS
035 oS Jsw WRNA G, (o3 8 )13 aul 5y 1) 38T
oo w6 Y Gl 53 ALk 03 s pde s 5 g
Jordly i 51 ke ul (gl a5l CDNA 5w (6l (glos s
ol s b s eslizal (Y0V)) ol S Loy ol )
JS RNA (‘ﬁf'“ Y+ dnvitrogen .S elile oS LS
Reverse (Invitrogen) (’ﬁj Sheslazal L CDNA o g

L 50 G 05 CDNA e .23 S & 50 transcription 11

[ Downloaded from mg.genetics.ir on 2026-02-11 ]

G s s LRNA G Ol o osbive w0 ol > b gla SHLET-Y Jous

MIR gene Primer (5' — 3")
miR160-RT GTC GTATCC AGT GCA GGG TCC GAG GTATTC GCACTG GAT ACG ACT GGC AT
miR160-F ACTGCCTGGCTCCCTGT
miR393-RT GTC GTATCC AGT GCA GGG TCC GAG GTATTC GCA CTG GAT ACG CGA TCA AT
miR393-F GAGGATCCTCCAAAGGG
Universal GTGCAGGGTCCGAGGT
ARF17-F CGACCGTAGACTTGACCCA
ARF17-R CTCTTGGGCTGGTGGTTGCA
AFB2-F CGGTAAAGGGTAGATGCC
AFB2-R TTCTGGCTTCTTGGTGACT
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